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Abstract

Constructing a feasible solution, where the focus is on “hard” constraints only, is an important
part of solving timetabling problems. For the University Course Timetabling Problem (UCTP), we
propose a heuristic algorithm to schedule events to timeslots based on cliques, each representing a
set of events that could be scheduled in the same timeslot, which the algorithm constructs. Our
algorithm has been tested on a set of well-known instances, and the experimental results show that

our algorithm compares favorably with other effective algorithms.
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1. Introduction

The educational timetabling problem is concerned with the scheduling of a number of events
(courses, lectures, examinations) into limited resources, such as rooms and timeslots, subject to a
set of constraints [1]. Some events have students in common so that they cannot be scheduled into
the same timeslot. This is one instance of a so-called “hard” constraint. Another hard constraint is
that the event must be scheduled into a room which satisfies its requirements (e.g. in terms of the
room capacity or equipment available in the room). A timetable which satisfies all the hard
constraints is called a feasible solution. Once the feasible timetable is constructed, a further step is
to improve the quality of the timetable by considering additional requirements called soft
constraints, such as spreading out the events which involve the same students or teachers so that
students and teachers spread their workload throughout the week. Soft constraints are not
compulsory, but they should be satisfied as much as possible.

Many efficient algorithms, such as traditional Integer Programming [2], [3], [4] Constraint
Logic Programming [5], [6] and meta-heuristic algorithms [7-23], have been designed to solve the
educational timetabling problem. It should be noted that the University Course Timetabling
Problem (UCTP) competition, organized by Metaheuristics Network and sponsored by PATAT in
2002 [7], has greatly promoted the application of meta-heuristic algorithms. The first-place winner
of the UCTP competition was a Simulated Annealing (SA) based algorithm designed by Philipp
Kostuch [9] with a special temperature cooling strategy. The third place winner was also a
SA-based strategy designed by Yuri Bykov [19] who modified the SA-variant called the Great
Deluge (GD) algorithm, which was first employed by E. Burke [18] to solve examination

timetabling problems. To the best of our knowledge, SA was first used by Abramson et al. [8] to



construct timetables in 1991. It has been proved that SA can efficiently solve many kinds of
timetabling problems in [9-13]. Tabu Search (TS) based algorithms proposed by Brigitte Jaumard
et al.[16] and by Luca Di Gaspero [17] ranked second and fourth in the UCTP competition
respectively. While it is true that the TS approach could construct high-quality timetables, more
effort was needed to design the Tabu mechanisms. Although genetic algorithms (GA) did not
perform well in the UCTP competition, they have been shown to be effective for various other
timetabling problems [14], [25]. For instance, Grigorios et al. [14] proposed a special genetic
algorithm, which does not use traditional crossover but only adopts the mutation operator, to solve
the Greek high-school timetabling problems, and experimental results show that GA was more
effective than the column generation approach presented in [15]. In the literature, other algorithms
such as Ant Colony Algorithm [20], [21], Neural Networks [22], and Artificial Immune
Algorithms [23] were also successfully applied to timetabling problems.

Most of the papers consider both hard constraints and soft constraints together. A popular
method [14], [24] is to integrate all the constraints into a single objective function where hard
constraints are associated with a much higher cost coefficient than soft constraints. Another
method [25] is to employ a two-stage approach, in which the first stage deals with constructing a
feasible timetable, and the second stage tries to minimize the violations of soft constraints. In most
cases constructing a feasible solution is considered more important than reducing the violations of
soft constraints, and the infeasible timetables are rarely acceptable in practice. However, as [26]
points out, there are only few papers concentrating solely on constructing feasible solutions. In
this paper, we focus on constructing feasible solutions.

Two events are conflicting if there is an overlap in the students attending them. In general,
conflicting events are not allowed to be scheduled in the same timeslot, and it is often defined as a
hard constraint. If we only consider this constraint, the timetabling problem can be regarded as a
particular case of graph coloring [27] of the conflict graph, in which events are represented by
vertices, conflicts between events are represented by edges, timeslots are represented by the colors,
and allocating timeslots to events can be represented by assigning colors to vertices with no
adjacent vertices having the same color. Thus unsurprisingly, some timetabling algorithms are
based on graph coloring algorithms with additional processing done to take into account the
timetabling problem’s other constraints (e.g. the suitable room constraint). In this paper, we do not
rely on graph coloring but instead introduce a clique-based heuristic. To the best of our knowledge,
there are very few papers which employ clique-based heuristics to solve timetabling problems.

The sequential techniques [28], [29] are graph coloring based constructive methods, in which
the events are first ordered by some metric [30], [31] (such as Largest Degree first, Least
Saturation Degree first or Largest Enrolment first) and then the events are scheduled into the

resource one by one. Often not all events can be scheduled and so further processes are required to



handle the unscheduled events. Carter et al. [32] employed a backtracking technique to reverse
earlier assignments of events in order to release resources for unscheduled events. Kostuch [9]
designed a five-step approach — which included the initial attempt, improvement attempt, shuffling,
blow-ups and opening the last slots — to construct a feasible timetable using less than the specified
number of timeslots.

Instead of scheduling events one by one, our approach tries to schedule all the independent
events at one step by considering cliques of the complement of the conflict graph. These
independent events will then be allocated to different rooms by bipartite matching. Our
clique-based approach is not only simple but also provides a framework for two heuristic steps,
the recombining step and the perturbing step, to efficiently expand the size of the cliques formed
and in so doing reduce the number of unscheduled events.

Recently, Lewis et al [1] created 60 test instances which were “harder” than those used in the
UCTP competition in the sense that feasible solutions were harder to construct. In [1], the authors
reported that some traditional sequential techniques could only schedule about 80% of the events.
Thus far, there are no algorithms that can solve all 60 test instances. Since some timetabling
problems, upon removing the hard constraint of allocating suitable rooms for events, transform
into very hard graph coloring problems, it is not surprising that the sequential techniques may fail
to construct feasible timetables for some instances. We have applied our heuristic on the 60 test
instances and have compared our results with that of the four algorithms proposed in [26] and [1].
Our algorithm, besides giving comparable, if not better, performance in almost all instances
(except only one) takes less running time.

The rest of this paper is organized as follows. In Section 2, we give the problem definition
and evaluation criteria. In Section 3, we present our algorithm based on cliques. In Section 4, we
analyze the experimental results of our algorithm when tested on the 60 test instances given in [1]
and compare such results with the algorithms given in [26] and [1]. Section 5 concludes.

2. Problem definition and evaluation criteria

The UCTP is defined to schedule a set of events E into a set of timeslots T and a set of
rooms R, subject to a set of constraints H . The problem considered by this paper is a particular
version of UCTP, in which the goal is to construct a feasible timetable where the hard constraints

are as follows:
H1. Every event must be scheduled into a suitable room which meets its requirements.
H2. No student is allowed to attend more than one event in the same timeslot.

H3. No room is allowed to be occupied by more than one event in the same timeslot.

Every room possesses a set of features, such as room size and availability of certain



equipment. Correspondingly, every event must be allocated to a room that meets its requirements.
So the number of available rooms for each event is fixed for a particular timetabling problem. A
feasible timetable should contain all the events without violating any hard constraints. The number
of timeslots in UCTP is assumed to be 45 (this parameter, which is based on 9 timeslots per day on
a 5-day week, can be readily changed), but when it is hard to schedule all the events into the
timetable while keeping its feasibility, some extra timeslots T (artificial timeslots) may be
added to satisfy the assignment of the unscheduled events. There are various ways to calculate the
penalty of scheduling events into artificial timeslots. In [1], the cost function is the sum of the
number of the artificial timeslots and the number of events scheduled in T . In [26], the cost
function is the sum of the students scheduled in artificial timeslots, but the final goal is to
minimize the number of events scheduled in T . In order to make a comparison with these papers,
the evaluation criteria adopted in this paper is the distance to the feasibility [1], i.e., the number of

events scheduled in artificial timeslots T .

3. Aclique-based algorithm

To the best of our knowledge, there are very few papers which employ clique-based heuristics
to solve timetabling problems. In [32], Carter et al. pointed out that a clique, a sub-graph where
the vertices were adjacent each other, could represent a set of mutually conflicting events in a
timetabling problem. This set of events had to be scheduled into different timeslots, so the
minimal number of timeslots used would be not less than the size of any clique in the conflict
graph. In their algorithm, a large clique was first determined and the examinations in this clique
had higher priority to be scheduled. In [33], Carter and Johnson observed that there were many
large cliques in the timetabling instances tested by them. They concluded that cliques may help to
extend some traditional approaches for timetabling. Inspired by their ideas, we further develop a
clique-based algorithm for constructing feasible timetables.

Let G be the conflict graph corresponding to a timetabling problem (which essentially
captures H2-type hard constraints); G be the complement graph of 6; V  be the vertices of
G; N(v) be the vertices adjacent to vertex V; N(C) be the vertices adjacent to vertices in
clique ¢; d(v) be the degree of v; w(v) be the weight of v, namely the number of
students attending the corresponding event; d(c) be the degree of clique C, namely the sum of
the degrees of all vertices in C; w(C) be the weight of cligue C, namely the sum of the
weights of all vertices in C; and S(C) be the size of clique C, namely the number of vertices in
C. The vertices of a cliqgue C in the complement graph G form an independent set S in the
original graph G . The vertices in S are not adjacent to each other, so they are conflict-free and
can be colored with the same color; that is, the corresponding set of events can be scheduled into

the same timeslot. Notably, our algorithm will consider cliques in complement graph G rather



than cliques in graph G (unlike [32] and [33]).

One can easily see that a particular timeslot in a feasible timetable contains a set of events t
that correspond to a clique of vertices C in the complement graph. So without the constraint of
room allocation, the problem of constructing a feasible timetable for UCTP is equivalent to the
problem of dividing the graph into 45 non-intersecting cliques. Once a set of conflict-free events
t (corresponding to C) is found, the room allocation for events t can be handled by running a
maximum matching algorithm matchRoom(t) (corresponding to matchRoom(c)) on the
bipartite graph of events and rooms ( E x R) with edges connecting events with their suitable
rooms. Events which cannot be matched to a room can be left for further consideration. We say a
clique is legal if the corresponding events are conflict-free and all of them are matched to a room
after the maximum matching.

To better explain the relationship between cliques and a feasible timetable, we give an
example (see Fig. 1). Suppose there are 9 events E ={e,,e,,...,&,}, 3 timeslotsT ={t,,t,,t,},
and 3rooms R ={r,,r,,r,}in a given timetabling problem. Let G in Fig.1 (a) be the graph of
the timetabling problem and G (which is shown Fig.1 (b)) be the complement graph of G.The
clique c={e,,e,,e,,&,}in G isan independentset s={e,,e,,e,,&,} in G.Note that the
corresponding events in S are conflict-free, so they can be scheduled into the same timeslot. We
can apply matchRoom(c) to allocate the rooms to the events (having regard to the H1-type
hard constraints). Since there are only 3 available rooms, at least one of the 4 events will not be
matched to a room. Suppose event €, is not matched to a room in the maximum matching. We
then remove €, from C and consider putting this event into another clique. In Fig.1 (c), we
observe that actually G can be divided into 3 cliquesc, ={e,,e,,e,}, C, ={e,,€;,e}
andc, ={e,,e;,8,}. If all of these cliques are legal cliques, then we can easily construct a

feasible timetable shown (for example, the one shown in Fig.1 (d)).

(a) The problem graph G (b) The complement graph G



(c) The graph is divided into 3 cliques (d) A feasible timetable

Fig.1 The relationship between feasible timetable and the cliques of graph

Clearly, one of the key steps of the algorithm is finding cliques. The approach we use to find a
cliqgue € in the graph G, findClique(G,V,c), is similar to the algorithm of finding the
largest clique proposed in [34]. However, it is not necessary to find the largest clique because the
number of events in a timeslot should not exceed the number of rooms. So the backtracking step
of the original approach in [34] is eliminated to save processing time. We start with a clique C
(which may be empty or may contain some vertices already) and a set of vertices V N N(c)
(withN(c) =V if c is empty) belonging to the graph G . We repeatedly (i) remove the vertex
v with the highest degree from V and add it into C, then (ii) replace V. with V N N(V)
(that is, all the vertices which are not adjacent to vV are removed from V ) until the clique stops
expanding when V  becomes empty. We finally get a clique C.

For example, in Fig.1 (b), if we begin with an empty clique C, then the vertex e, in V
with the highest degree (if there are more than one, we randomly select one), is firstly added into
C, and at the same time, the former V is replaced by V N N(e;) ={e,.e,,€;,€,,6,}. After
this step, e, becomes the vertex in V with the highest degree, so we add it into C and replace
V with V " N(c ={e;,e,}) ={e,,e,}. The next vertex added into ¢ will be e,, followed
bye,;, and so on. We finally obtain a clique ¢={eg,€;,e,,6,} when V becomes empty.
However, if C is not empty at the beginning with, say, vertex €. already in the clique, then the
first vertex added into the clique will be €; , which has the highest degree in
VAN ={e}) ={e, e, e, }. The clique obtained will be ¢ ={e.,eq,€,}.

Note that findClique(G,V,c), which is used repeatedly in our algorithm, is not new and
may not be the best way to find cliques in a graph, but its simplicity makes our algorithm easier to
understand, and it is also very fast, so we adopt it to enhance the computational speed.

We now focus on the problem of dividing the graph G into 45 legal cliques
C :{Cucz . c45} and describe our algorithm in detail. There are three steps in our algorithm.
The pseudo-code of the algorithm is given in Fig.2.

The first step: Initializing



The first step is the initialization of the 45 cliques. At the start, we have 45 empty cliques
C={c,,c,,...C,s},agraph G and all vertices V . We will initialize the empty clique in C
one by one. For the initialization of clique C;, instead of selecting the vertex with highest degree
as the first vertex, we randomly choose a vertex v, from V so as to spread out the initialized
cligues on the graph. Then the clique is expanded using findClique(G,V,c;) as described above.
(So, the second vertex added into C, will be the one with the highest degree in N (v;).) Once the
cligue c; is obtained, we run matchRoom(c;) on it. The unmatched vertices are removed
from C; while the matched vertices are removed from V . If there are no vertices left in V
after this initialization, we have succeeded in constructing a feasible timetable. However, it is
usually the case that some vertices cannot get into any clique. They will be handled in the next
steps.

The second step: Recombining

The second step is to try to recombine the cliques. This step plays a key role in our algorithm.
There are two main reasons that a vertex cannot be added into any clique. One reason is that it
cannot be matched to a room. The other reason is that it is not adjacent to some vertices in the
clique. Based on these situations, we design a process called recombining(c;) to enlarge a
cliqgue c;. The idea of recombining is to obtain a larger clique by removing a portion of vertices
C, from current one ¢, and use findClique(G,V,c, \c,) to expand it to be a bigger one.
For each vertex V;; in C;, whether it should be removed or not from the clique is decided by a
probability p (0 < p <1); in particular, the vertex will be removed from c; and added into
C, when p isgreater than a random real number between 0 and 1(using rand () to implement).
The probability o is high initially, but it decreases by multiplying a deterioration rate «
(0 < a <1) after every N loops, so the vertices being removed become fewer and fewer and
the cliques tend to be stable in later phase. However, we may risk getting a smaller clique. To
prevent this from happening, an acceptance criterion, in which the new clique ci' obtained by
recombining(c,) is accepted only when s(c;)<s(c;) or w(c)<w() or
d(c,) <d(c;), is designed to guide the search. The reason we accept the new clique with greater
weight is that there are more students scheduled into the timetable. The clique with fewer degrees
is also accepted because it seems that a vertex with low degree has fewer cliques to go to, so it
should be settled into a clique earlier. Note that the order in which vertices in C; are considered
has some impact on the maximum matching, so the vertices in Ci' will be randomly ordered
before we run matchRoom(ci'). We will try K times until we get an acceptable clique;
otherwise, we refuse the new clique ¢; .

In this step, there are a number of inner loops. For each cycle of the inner loop, we randomly
order the cliques in C, and run the recombining process on each clique one by one according to

that random order. After each inner loop, we lower p with the deterioration rate «



(p = p*a) and start a new inner loop. This step will end when o reaches 0.01 or when there
are no vertices left in V .
The third step: Perturbing

The third step will try to swap some vertices between two cliques so that more vertices can
be reinserted into these two cliques. The idea of perturbing between bipartite graphs is actually the
same as the switching between timeslots. It is not the main part of our algorithm but can be quite
helpful when there are still a few vertices that cannot get into any clique after the second step.
Recombining is actually a hill climbing exercise: the number of unscheduled events decreases
sharply in a short time, but little improvements can be made in later phases when the process
drops into a local optimum. Perturbing brings a lot of benefits when this happens. For stubborn
cases where there are still vertices which do not belong to any clique after the third step, the idea
is that the recombining process and the perturbing process will be run alternatively for as many
times as time allows.

The perturbing step consists of L loops. For each loop of perturbing, we randomly select
M pairs of cliques and mark all of them unvisited. For each unvisited pair of cliques, we
randomly select a vertex v from the first clique C; and push it into the second clique C;. The
vertices V =C; \ N(v) which are not adjacentto v in C; are popped outand pushed into C;.
After this process, C'j =C; U{V}\V is a new clique but ¢, =C, UV\{V} may not be a
clique. However, if both ci' and C'J- are legal, we accept C, =ci' and C; :C'J- and try to add
each of the vertex in V into C; or C; one by one, while keeping the legality of these two

cliques. Otherwise, we refuse this swap.

Fig.2 The pseudo-code of the algorithm

The first step: Initializing
for i <1 to45
V; < randomly select a vertex from V
Cc, < ¢, u{v}
¢, < findClique(G,V,c;) //return a legal clique
¢, < matchRoom(c; ) //return the matched events
V «V\c
The second step: Recombining
initialize p, ¢, N and K
while (p>0.01and V is not empty)
for n<1 to N

randomly order the cliquesin C




for 1< 1 to45
C < C; //'backup c; before recombining
done « false
for each vertex v, €,
if (p>rand())
C, < C; U{v;}// T, isthe collection of removed vertices
¢; < C; \{v; }//remove v; from c,
¢, < recombining(c;) //return the new clique after recombining
for kK«1 to K
¢, < matchRoom(c; ) //return the matched events
if (s(c;) <s(c;) or w(c,)<w(c,) or d(c,)<d(c))
C, < C
V «V uc\c, /lupdate the vertices in 'V
done « true
Break
if (done = false)
C; <— C// we do not accept the new clique
p—pra
The third step: Perturbing
initialize L and M
if ( V is not empty)
for <1 to L

randomly select M pairs of cliques and set them unvisited

select a pair of unvisited clique (C;, C;)

V < randomly select a vertex from ¢;
V¢ \N(V)
¢, <, UV\{v}
¢, < ¢, U{V}\v
if (C; and ¢, are legal)
C <G
C; «C;
for each vertex veV
if (c; U{v} islegal)
C, « ¢, u{v}
V <V \{v}

else if (¢; U{V} is legal)




c; «¢; u{v}
V <V \{v}
schedule the remaining events into artificial timeslots T

if (there is still time) run the Recombining and the Perturbing alternately for 100 times

return the number of events scheduled in T

4. Experimental results
Our algorithm was tested on the 60 test instances generated by Lewis et al. in [1], which can

be downloaded from http://www.dcs.napier.ac.uk/~benp/centre/timetabling/harderinstances.htm. It

is already known that there is at least one feasible solution for each instance. The number of
timeslots is fixed to be 45 and these instances are classified into three categories: small, medium
and big. As in [1], the limited time for each run is set to be 30, 200, and 800 seconds for each
small, medium and big instance respectively. More information about this benchmark can be
obtained in [1].

We successfully constructed feasible solutions for 6 instances only after the first step. This
showed that our algorithm’s initializing step was not as effective when compared with the
sequential technique in [26]. However, our initializing step ran in less time and created a good
beginning for further improvement steps.

There are six parameters in our algorithm: «, p, N, K, L and M. They have a
great impact on the performance of our algorithm. In order to find a good combination of values
for o and p, we first fixed N =100, K =1,L =1000 and M =|E|*|E|/16. The initial
value of « and p were set to be 0.8 and 0.3. At first, we fixed « butincreased p by 0.05
for each test. From the tests, we found that the algorithm performed quite well when p was
around 0.5. For tuning ¢ , we also fixed o to be 0.6 while increasing « by 0.05 for each test.
The values of o and p were finally fixed according to the average performance of the tests
over all the instances. After we fixed ¢ andp, N, K, L and M were carefully tuned
according to the running time and the performance. For the recombining process, we first set
N =100 and K =1, and then for each test, we increased N by 100 and increased K by 1
alternately. The running time of test for each combination value of N and K was set to be half
of the time limit. The combination of values for N and K for each instance was recorded, and
the best combination was finally selected according to their average result over all the instances.
For the perturbing process, L and M were also tuned in a similar way. But L was set at
1000 and M was setat |E|*|E|/16 atfirst, and then we increased L by 1000 and increased
M by |E|*|E|/l6 alternately. However, the running time for each test was half of the
recombining process, namely, one quarter of the time limit. In our experiments, we used the same

combination of values for ¢, p, N, K, L and M, which had the best average results



over all the instances.

In the process of recombining, the deterioration rate o was fixed to be 0.95 and the
probability o was set to be 0.6 initially. The number of cycles N for each inner loop and the
number of times K for maximum matching on a clique had great impact on the performance of
the algorithm. They were carefully tuned and were finally set as N =300 and K =5. The
greater N and K were, the better results we obtained, but of course, the more CPU time was
used. For the perturbing step, the loops of perturbing L was set as 10* and the number of pairs
of cliques M was set at |E|*|E|/4, that is, about half of the total pairs of cliques have a
chance to be perturbed. For small and medium instances, most of the unscheduled events could be
inserted into timeslots after perturbing. But for big instances, we still needed to try to run the
recombining process and the perturbing process alternately for 100 times.

The proposed algorithm was implemented in C++, and was run on a Pentium 1V, 2.60 GHz
and 512 Mb of RAM under Windows XP. We carried out 20 runs of our program for each of the
60 instances (i.e. comprising 20 small, 20 medium and 20 big instances). The best and average
results were recorded and compared with HAS [26] and Lewis I-111 [1]. They are shown in Table 1,
Table 2 and Table 3. The column “Min” shows the minimal number of unscheduled events (the
events scheduled into artificial timeslots) during the 20 runs of the algorithm. In the brackets of
the same column, we give the number of times that the best solution was found over the 20 runs.
The column “Ave” denotes the average humber of unscheduled events over 20 runs. In the column
“CPU(s)” we present the average CPU time (in seconds), but in HSA [26], they provided the
minimal CPU time needed to find the best solution, and value 0 means that the constructive
heuristic could find a feasible solution using just 45 timeslots after initialization. The last row of
each table calculates the number of instances we succeeded in constructing feasible timetables.
The columns Lewis I, Lewis Il and Lewis Il contain the best results from 20 runs of the grouping

genetic algorithm (GGA)[1] as given in [35].

Table 1: Small Instances

Instance Our algorithm HSA Lewis Lewis Lewis
name Min | Ave | CPU(S) | Min | Ave | CPU(s) I I I
s1 020) | © 005 |0@0)| © 0 0 0 0
S2 020) | © 002 | 0(0) | © 0 0 0 0
S3 0(20) 0 1.25 | 0(20) 0 9 0 0 0
S4 020) | © 005 |0@0)| O 0 0 0 0
S5 0(20) 0 4.60 | 0(20) 0 5 5 0 0
S6 020) | © 002 |0@20)| 0 0 0 0 0
S7 0(16) | 0.2 002 | 0(0) | © 0 0 0 0




s8 | o0@4) | 03 | 005 | o) | 1.9 79 12 4 0

SO | 0@17)| 015 | 002 | 0@) | 385 | 84 4 0 0
S10 | 0@0) | 0 125 | 0(0) | 0 15 0 0 0
S11 | 0@0)| o 002 |0@0)| O 0 0 0 0
s12 | 0@0)| o0 275 [ 0(0)| © 0 0 0 0
S13 | 0(0) | © 1.00 | 0@ | 1 15 0 0 0
S14 | 0(7) | 07 | 7055 | 3(1) | 595 | 136 17 3 0
S15 | 0(0) | © 055 |0(0)| O 0 0 0 0
S16 | 0(20) | © 035 [0(0)| O 13 0 0 0
S17 | 0@0) | © 200 |[0(0)| © 13 0 0 0
S18 | 06) | 0.7 | 5165 | 0(11) | 045 | 36 3 3 0
S19 | 0@0) | 0 1.00 |o0@1) | 1.2 25 3 3 0
S20 | 0(17) | 015 | 70.85 | 0(20) | O 0 0 0 0
Total 20 19 14 18 20

The timetabling problem is an instance of a larger family of grouping problems [1], [36], where a
set of items S required to be partitioned into a collection of mutually disjoint groups S;, such
that:
Us; =S and s;Ns;=¢ for i# ]

Falkenauer [36] pointed out that when the traditional genetic algorithm (GA) is applied to such
grouping problems, there may be high redundancy in representations and operators, so they
proposed a variation of GA named grouping genetic algorithm (GGA) and first applied it to graph
coloring problems. Recently, an improved GGA (Lewis I, Lewis Il and Lewis Ill) proposed by
Lewis et al. [1] was also successfully applied to the timetabling problem. In Lewis’s algorithm,
each timetable is coded as a two dimensional matrix where rows represent rooms and columns
represent timeslots. The structure of the algorithm is similar to GA, but they designed a special
genetic cross operator. This operator comprises four stages: point selection, injection, removal of
duplicates using adaptation, and reconstruction. They also employed a new method for measuring
population diversities and distances between individuals with the grouping representation. These
mechanisms are well designed according to the features of the grouping problems and it was

proved to be efficient in constructing feasible solutions for UCTP.

Table 2: Medium Instances

Instance Our algorithm HSA Lewis Lewis Lewis
name Min | Ave | CPU(S) | Min | Ave | CPU(s) I I i
M1 020) | © 585 | 0(0) | O 0 0 0 0
M2 020) | © 15 | 00| O 0 0 0 0




M3 | 0(0)| © 505 | 0(0)| O 8 0 0 0
M4 | 0(0)| © 205 [0(0)| o0 3 0 0 0
M5 | 0@20)| 0 | 5975 |0@0)| o0 85 8 0 0
M6 | 0(20) | © 795 | 0(0)| © 20 15 0 0
M7 0(1) | 355 | 13445 | 1(1) | 415 | 440 41 34 14
M8 |0@20)| 0 | 11.35 |0(0)| O 12 21 9 0
M9 0(1) | 215 | 1232 | o) | 49 | 269 30 17 2
M10 | 0(0) | © 035 |0@0)| O 0 0 0 0
M1l | 0(0) | © 34 |0(0)| © 25 12 0 0
M12 | 0(0) | © 65 |0(0)| O 54 0 0 0
M13 | 0(20) | © 92 |0(12) | 05 | 172 23 3 0
M14 | 0(0) | © 109 | 0(0) | 0 59 0 0 0
M15 | 0(20) | © 7 |09 | 005 | 72 10 0 0
M16 | 0(15) | 03 | 2165 | 1(2) | 515 | 733 50 30 1
M17 | 0(0) | © 18 [1(0) | 0 239 21 0 0
M18 | 0(20) | © 865 | 0(2) | 6.05 | 429 15 0 0
M19 | 0(14) | 03 | 1645 | 0@3) | 545 | 511 51 0 0
M20 | 0(13) | 065 | 2455 | 2(1) | 106 | 457 15 0 3
Total 20 19 7 15 16

HSA [26] initializes the timetable by using two graph coloring heuristic methods: Largest Degree
first (LD) and Least Saturation Degree first (LSD). When there are still events that cannot be
scheduled within 45 timeslots after initialization, it opens additional timeslots, called artificial
timeslots, to hold the remaining events. However, scheduling the events into the artificial timeslots
will be punished by a objective function f (S), which calculates the number of events assigned in
the artificial timeslots. In the improving phase, HSA tries to reduce f(S) by combining SA and
three neighborhood operations: change the assignment of one event, swap two events, and perform
the modified kempe chain move. This kempe chain move operates between two randomly selected
timeslots. The events between both timeslots are connected if they conflict or they are scheduled
in the same room. Before this move is performed, an event is randomly selected, a chain is
triggered from this event to its connected events, and this chain is triggered alternately between
these two timeslots. From the performance of HSA, one can conclude that this operation works

quite well when it is combined with SA.

Table 3: Big Instances

Instance Our algorithm HSA Lewis | Lewis | Lewis

name Min | Ave | CPU(s) Min Ave | CPU(s) | I 1"

BL [0@0)| 0 184 | 0(20) 0 0 0 0 0




B2 |0(0)| 0 942 | 0(20) 0 283 0 0 0
B3 |0(0)| 0 554 | 0(20) 0 447 0 0 0
B4 |0(20)| 0 | 1335 | 0(0) 0 406 32 30 8
B5 12) | 32 | 3531 | 0®6) | 1.1 | 743 31 24 30
B6 | 10(1) | 154 | 319.25 | 5(1) | 845 | 893 90 71 77
B7 | 39(2) | 46.65 | 383.85 | 47(1) | 58.3 | 966 150 | 145 | 150
B8 | 0(20)| 0 | 13675 | 0(20) 0 210 35 30 5
B9 |0(20)| 0 | 1226 | 0(19) | 0.05 | 419 26 18 3
BI0 | 0@3) | 1.95 | 3196 | 0(6) | 1.25 | 660 36 32 24
B1l | 0@2) | 235 | 2717 | 0(14) | 035 | 444 43 37 22
B12 |0(0)| 0 | 5455 | 0(20) 0 240 4 0 0
B13 | 0(0) | 0 | 8415 | 0(20) 0 274 23 10 0
B14 | 0(20) | 0 67.8 | 0(20) 0 271 8 0 0
BI5 |0(0)| 0 | 8395 | 0(0) 0 255 120 98 0
B16 | 0(20) | 0 | 4685 | 0() 2 755 120 | 100 19
B17 | 0(6) | 2.05 | 554.35 | 76(1) | 89.9 | 998 260 | 243 | 163
B18 | 0(4) | 1.7 | 43795 | 53(1) | 626 | 764 199 | 173 | 164
B19 | 40(1) | 53.2 | 410.45 | 109(1) | 127 | 998 262 | 253 | 232
B20 | 9(2) |14.05| 3705 | 40(1) | 467 | 827 186 | 165 | 149
Total 15 14 3 5 7

For the big instances, we obtained better results for almost all instances in comparison with
Lewis I, Lewis Il and Lewis Ill. Compared with HSA, our algorithm obtained improved results
(shown in bold font) for about half of the big instances. But for some small instances, such as S18
and S20, our algorithm returned fewer feasible solutions in 20 runs. For B6, our algorithm
dropped into local optima and returned a worse solution in the end. Our algorithm also failed to
construct a feasible timetable for B5 while HSA was able to return one. However, it is worth
mentioning that, for some of the hardest instances, such as B17 and B18, our algorithm was still
able to construct feasible solutions, whereas HSA was not able to do so. For B16, B19 and B20,
our algorithm performed better than HSA. This shows the advantage of our algorithm in solving
big instances. For other instances, our algorithm also performed no worse than HSA. On the whole,
our algorithm successfully constructed feasible timetables for almost all instances in short time.
We conclude that our algorithm is robust and efficient in constructing feasible solutions for

timetabling problems.

5. Conclusion and future work

Our algorithm has been successfully applied to construct feasible solutions for difficult



timetabling problems. The computational results demonstrate our algorithm’s high efficiency, and
also proved that it could compete with other effective algorithms. The recombining process
introduced in our algorithm can be easily extended and applied to solve more timetabling
problems.
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